The Ideal Generation Conjecture for General Rational Projective Curves
نویسنده
چکیده
We pose a conjecture for the expected number of generators of the ideal of the union C of s general rational irreducible curves in P r. By using the computer we prove the conjecture for C of low degree d (e.g. if s = 1 for d 80 and if s 10 for d 40).
منابع مشابه
Conditional Results on the Birational Section Conjecture over Small Number Fields
In the present paper, we give necessary and sufficient conditions for a birational Galois section of a projective smooth curve over either the field of rational numbers or an imaginary quadratic field to be geometric. As a consequence, we prove that, over such a small number field, to prove the birational section conjecture for projective smooth curves, it suffices to verify that, roughly speak...
متن کاملBases and Ideal Generators for Projective Monomial Curves
In this article we study bases for projective monomial curves and the relationship between the basis and the set of generators for the defining ideal of the curve. We understand this relationship best for curves in P and for curves defined by an arithmetic progression. We are able to prove that the latter are set theoretic complete intersections.
متن کاملUniformity of Stably Integral Points on Elliptic Curves
Let X be a variety of logarithmic general type, defined over a number field K. Let S be a finite set of places in K and let OK,S be the ring of S-integers. Suppose that X is a model of X over Spec OK,S . As a natural generalizasion of theorems of Siegel and Faltings, It was conjectured by S. Lang and P. Vojta ([Vojta], conjecture 4.4) that the set of S-integral points X (OK,S) is not Zariski de...
متن کاملOn Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملMotives and Deligne’s Conjecture
Deligne’s conjecture [Del] asserts that the values of certain L-functions are equal, up to rational multiples, to the determinants of certain period matrices. The conjectures are most easily stated for projective, smooth varieties over number fields. Such a variety has an L-function whose local factors encode Frobenius eigenvalues. The isomorphism between de Rham and Betti cohomologies gives a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001